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Abstract. It is shown that, when only two turning points are important, the generalised 
Bohr-Sommerfeld condition for Regge-pole positions can be derived from the behaviour 
of the semiclassical wavefunctions in a region far from the turning points. The analysis 
proves that the poles can be accurately determined from the Bohr-Sommerfeld formula 
also when the turning points lie close together. The implications of the present analysis 
as to certain asymptotic properties of the semiclassical pole positions and the corresponding 
pole residues are discussed. 

1. Introduction 

Semiclassical and phase-integral methods have proved to be useful and accurate tools 
in the analysis of complex angular momentum poles (Connor 1980). A particular 
example of the simplicity of semiclassical formulae is given by the generalised Bohr- 
Sommerfeld condition for the pole positions: 

( k 2  - U - ( Z + $ ) 2 / i - 2 ) 1 ’ 2  dr  = ( n  +f)r 1::: 
where k is the wavenumber, U the potential (in units of h 2 / 2 m ) ,  I is the complex 
angular momentum variable, r ( , )  and r (2 )  the two relevant turning points in the complex 
r plane and n is the quasi-vibrational quantum number labelling the poles. 

Apparently, the Bohr-Sommerfeld condition (1) used in the present context is 
formally identical with the one used to determine the bound states in a simple potential 
well. One must remember, however, that the potential U in (1) is defined to vanish 
asymptotically ( r  + +CO) and does not necessarily have a well. Furthermore, in complex 
angular momentum theories, the energy ( k 2 )  is a quantity which is given in advance. 

Several authors have derived formula (1) (Brander 1966, Dombey and Jones 1968, 
Connor et al 1976, Knoll and Schaeffer 1976, Thylwe 1983) using different asymptotic 
techniques. Even higher order quantum corrections can be taken into account (Brander 
1966, Thylwe 1983). 

In the present paper we shall give another, alternative derivation of (1). It is 
analogous to Wentzel’s proof for the corresponding bound-state problem, a procedure 
which was rigorously justified some years ago (Froman and Froman 1977a, Froman 
1980). This derivation gives some further insight as to the accuracy of the Bohr- 
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Sommerfeld formula and indicates that it is, under certain circumstances, far more 
accurate than can be expected from previous derivations using semiclassical connection 
formulae for the wavefunction at each turning point. 

Generally one agrees that formula (1) improves as the quantum number n gets 
larger, i.e. the error is somehow associated with the distance between the two turning 
points r ( l )  and r ,2)  in ( 1 ) .  However, in the present analysis it will be apparent that 
the distance to the nearest transition point other than r ( l )  and ri2) (lying outside a 
certain region to which r ( , )  and ri2) belong) can have the dominant influence on the 
accuracy of (1).  

The main results are derived in 0 2. In 0 3 we discuss the implications of the present 
analysis in the study of certain asymptotic properties of pole positions and pole residues. 

2. Derivation 

In the following derivation of the Bohr-Sommerfeld formula (1) we shall make use 
of the phase-integral method developed by Froman and Froman (1965). Their formula- 
tion automatically takes into account higher order corrections to the standard semi- 
classical (JWKB) results and, furthermore, it keeps track of the errors introduced in 
replacing the exact solution of the Schrodinger equation by a linear combination of 
phase-integral wavefunctions. 

Consider the radial Schrodinger equation 

d2$/ldr2+ Q 2 ( r ) $  = O  ( 2 )  

Q2( r )  = k 2  - U - I (  1 + l ) /r* .  (3) 

The wavenumber k is assumed real and positive, but r, U and I may be complex 
quantities. U is an analytic function of r in the region of the complex r plane under 
consideration, except possibly at the origin r = 0. 

where, with obvious notation, 

The phase-integral wavefunctions are defined as follows: 

fl(r)  = q-'/*(r) exp(iw(r)) (4a)  

f i ( r )  = q - ' l 2 ( r )  exp(-iw(r)) 

w( r )  = J ' q(  r )  dr. 

with 

The general expression for the function q ( r )  is given by equations (3.6)-(3.9c) in 
Thylwe and Froman (1983). In a first-order approximation one only has to assure that 
the choice of q ( r )  makes fl(r) and f 2 ( r )  exact local solutions of ( 2 )  at the origin and 
at infinity. The choice 

q 2 ( r ) = k 2 -  U - ( l + i ) 2 / r 2  (6) 
satisfies these requirements for most radial problems (Thylwe and Froman 1983). The 
relevant complex turning points ril) and r (2 )  are now simple zeros of the function q2( r )  
in (6). The positions of r(')  and r(2)  are not altered when higher order phase-integral 
approximations are used, even if the function q( r )  appearing in equations (4a, b )  and 
(5)  is then defined differently (cf Thylwe and Froman 1983). 
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According to equations ( 3 . 2 5 ~ )  and (3.256) in Froman and Froman (1965) the 
regular solution I) of (2) can be written as 

+ = a , ( r l f 1 ( r )  + a 2 ( r ) f 2 ( r )  ( 7 a )  

+’= u l ( r l f ’ l ( r ) + u 2 ( r l f ~ . ( r ) .  (76) 

I f  the ‘coefficients’ u l ( r )  and u 2 ( r )  have been determined at a certain point r’,  they 
are given at an arbitrary point r by 

the elements of the two by two matrix F being given by the convergent series expansions 
(3.22u)-(3.22d) in Froman and Froman (1965). Useful estimates of these series have 
been derived in Froman and Froman (1965) on the assumption that the points r and 
r’ can be connected by a path A in the complex r plane, along which the absolute 
value of exp[i w (  r ) ]  increases monotonically from r’ to r. These so-called basic estimates 
are given by equations (4.3u)-(4.3d) in Froman and Froman (1965). They are valid 
when the quantity p defined by 

with 

(9) 

is much smaller than unity. 
We now introduce cuts in the complex r plane such that q ( r )  is single valued, and 

such that the phase of q ( r )  can be chosen so that f l (r)  represents an outgoing free (or 
Coulomb distorted) wave as r + +cc as well as it represents the regular solution at the 
origin. For this purpose we can, for example, utilise the results in Thylwe (1983) as 
regards the qualitative behaviour of Stokes and anti-Stokes lines associated with the 
relevant turning point configuration. After an allowed deformation of the cuts shown 
in figures 5 and 6 in that paper we finally obtain figure 1 in the present work. 

+? 

I r 

R e  r 

Figure 1. Schematic illustration of the configuration of two turning points and their 
associated Stokes and anti-Stokes lines for a Regge state (cf Thylwe 1983). The arrows 
are defined so that -*- is the direction for which i dw is real and >O (Stokes line) and 
-+- is the direction for which dw is real and > O  (anti-Stokes line). 
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At the origin we thus have 

where a, is an undetermined normalisation factor. Using the relation (8) and the inversion 
formula for F (see equation (3.20) in Froman and Froman (1965)) we find the exact 
representation at infinity 

* Z m  ai(Fz(+O, +m)fi(r) -F21(+0, +m)f2(r)) .  (12) 

F21 and F22 are here independent of r, since the potential U as well as the function 
q( r )  are such that f,( r )  and f 2 (  r )  are exact solutions in the limit r + +CO. 

Let us further specify a particular exact Regge state corresponding to the wavefunc- 
tion $, with I = I , ,  say, which satisfies the cxact pole condition (cf equation (2.10) in 
Thylwe (1983)) 

F21(+0, + c o ) = O  (13) 

or, equivalently, 

The next step is to show that +, is approximately proportional to fl( r )  also in a certain 
simply connected region in the r plane, which contains the points +O and +CO and 
which surrounds the two relevant turning points. In a previous investigation by the 
present author (Thylwe 1983) the key assumption is that the two turning points are 
well separated so that an accurate phase-integral representation of JI in terms of a 
linear combination of f,( r )  and f2( r )  exists in a region between r ( , )  and r(2j. We shall 
relax this assumption here and instead require that r ( , )  and r(2j are well separated from 
other transition points which may be present. 

Such a requirement assures the existence of a certain band B (see figure 2), 
surrounding the two turning points, where q2( r )  is approximately a quadratic function 
of r, putting 

q 2 ( r )  = c l (r  - rc )2+  c2 ( r  in B )  (15 )  

with being constants and r, located at half the distance between r ( , )  and r (2) .  The 
orientation of important Stokes and anti-Stokes lines in B is then easily established, 
even quantitatively, if c,,~ are known (see figure 2). The two Stokes lines with arrows 
pointing outwards (the direction for which idw is real and >O so that lexp(iw)l grows) 
divide the band B into two halves B,  and BR (L = left and R = right) as shown in 
figure 2. From the assumptions in Thylwe (1983) of a two-turning-point Regge-pole 
configuration it follows that there exists a path A,, along which lexp(iw)l is non- 
decreasing as one moves from +O to any point in BL (see figure 2). Similarly, any 
point in BR can be reached from +CO by a path A R ,  along which lexp(iw)l is non- 
decreasing, except for a remote part of finite length, proceeding orthogonally to the 
real axis. It is realised that these requirements agree with the monotonicity properties 
discussed in 0 3 in Thylwe (1983) except possibly in the neighbourhood of the turning 
points r ( , )  and r (2 ) .  
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Figure 2. The figure shows the relevant Stokes and anti-Stokes lines in a deformed circular 
region B (= B, U 8,) surrounding the two turning points which may lie close together but 
should be well separated from other transition points. The paths AL and AR, used for 
tracing the phase-integral wavefunctions from +O and +cc to arbitrary points Z ~ E  B, and 
zR E E,, respectively, are indicated. The vertical part of AR is eventually shifted towards 
infinity in the same way as discussed in 5 4 in Thylwe and Froman (1983). C is a closed 
contour of integration appearing in equation (27).  

The F matrix connecting an arbitrary point zL, say, in BL with the origin can easily 
be estimated along AL with the aid of the basic estimates mentioned previously. We find 

where P~ is the integral calculated along AL. The two unknown elements in (16) 
will not enter into our derivation, as will be seen presently. Applying (4a),  (4b), (7a), 
(8), ( 1 1 )  and (16), we get 

4 n ( z L ) = a l f i ( z L ) ( 1 + O ( P L ) )  (zL in BL). (17) 

The matrix F(zR, +CO) must, however, be considered as a product of the matrices 
F(zR, +co+iS) and F(+co+iS, +E), where S denotes the length of the remote vertical 
part of A R  when this part is shifted towards infinity (see figure 2). According to 
equation (4.9) in Thylwe and Froman (1983) we find that the latter matrix is exactly 
equal to a unit matrix. For the remaining matrix in the product we make use of the 
basic estimates again, thus obtaining 

F( zR, +CO) = 

( O b  R )I exp(2iw(zR))l 1 +o(PR)(1 +o(PR)lexp[2i(w(zR)- w(+CO+iS))]l) ) (18) 
1 +o(PR) 0(p~)lexp[-2iw(+oo + i ~ ) ] l  

which, together with equations ( 4 4  b), ( 7 a ) ,  (8) and (14), gives 

(Ln(ZR)  = blfI(ZR)(l.tO()(LR)) (zR in BR). (19) 

We observe that the regions BL and BR have a common boundary on which formulae 
(17)  and (19) are valid. Since the exact solution 4, is continuous there, we conclude 
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from (17) and (19): 

b,= a , ( l  + O b ) )  
and according to (14): 

F22(+0, +m) = 1 + O ( p )  (21) 

where p is calculated along a joint path A =  A L v  AR which connects +O and +W. 

Furthermore, we have established an approximate wavefunction with control of the 
error in the whole of region E (and in some region connecting E with +O and +CO): 

We shall now see that, in order to derive (l),  it is sufficient to have these approximate 
Regge state wavefunctions only in the surrounding band E, the size of which is 
determined by the presence of transition points other than r ( , )  and r(2) .  There are of 
course other such transition points present. (At the origin, for example, q 2 ( r )  has a 
higher-order pole of the type r-”’, with m an integer not smaller than 2 (see equation 
(6) and examples given by Connor et a1 (1980).) The exact wavefunction $ ( r )  may 
have singularities in connection with them without violating the present derivation. 
Thus, having established that $ , , ( I )  is approximately represented by a , J (  r )  in the 
whole band E, we can utilise Wentzels’s line of argument (see D 4 in Froman and 
Froman 1977a). To this end we recall some properties of the exact wavefunction and 
its derivative. 

The exact regular solution $, is an analytic function of the complex radial variable 
r in the band E and the region surrounded by E. We note that 4, is analytic at the 
turning points r ( , )  and r(2)  even though the phase-integral approximants fi,*( r )  are not. 
Furthermore, $, has precisely n simple zeros (for the nth Regge state), located in a 
region between r ( , )  and r(2)  which in our case is surrounded by E. In the same region 
under consideration, the quotient $:/$, is an analytic function of r with simple poles 
of residue 1 at the n zeros of $,. If C is a closed contour in the same region which 
encircles the n zeros of $, in the positive sense, we obtain from Cauchy’s residue 
theorem 

d r = 2 v i n  (24) 

which is an exact formula, since $, is an exact ‘eigenfunction’ for the corresponding 
Regge state. 

The contour C can, of course, be deformed to lie in the region E, where the 
approximate expressions for $, and $ A ,  i.e. equations (22) and (23), respectively, are 
valid. From ( 4 a ) ,  (22) and (23) we thus obtain the following expression for the 
integrand: 

($;I$,)= -(d/dr) In q1’2+iq+O(p) .  (25) 

Since the approximand in ( 2 5 )  is a slowly varying function on the contour C (cf 
equation (15)), it can be used, without introducing further errors, to evaluate the 
integral in (24) approximately, thus yielding (recall that q( r )  is single valued in E but 



Bohr-Sommerfeld condition for  Regge poles 3451 

q ” 2 ( r )  is not; it changes the sign after one completed turn along C): 
r 

- ~ i + i f ~ q ( r ) d r + O ( p ) = Z r r i n .  (26) 

Hence 

q ( r )  d r = ( n  + i ) r r+O(p) .  441 ,  
If q( r )  is chosen according to equation (6), which is a first-order phase-integral 

expression, C may be condensed onto the lips of the cut joining r ( l )  and r,,), thus 
giving us the Bohr-Sommerfeld condition (1) with an additional measure of the error. 
The p integral in (27) is, however, still associated with the original contour which was 
lying in B. As such, this p integral may be arbitrarily small, depending on some 
arbitrarily large parameter in the Schrodinger equation, even if the phase-integral 
distance between r ( l )  and r(2)  and, hence, the quantum number n is not large. On the 
other hand, along a ‘traditional’ connection path, which circumvents each turning 
point separately (see, for example, Thylwe 1983), the quantity p cannot be made 
arbitrarily small unless n + 03. This distinction is fundamental for the analytical 
investigations of, for example, the high-energy behaviour of Regge-pole trajectories 
using the Bohr-Sommerfeld formula (Thylwe 1985) (see also related numerical studies 
by Connor et a1 1976, 1979, 1980). 

3. Discussion 

The derivation above widens the validity of the Bohr-Sommerfeld Regge-pole condition 
so that it is no longer essentially a large quantum number n formula, even if a 
‘traditional’ derivation of it suggests that it is the case. Such an extended validity of 
the well known semiclassical two-turning-point formula for the corresponding pole 
residues (Brander 1966, Knoll and Schaeffer 1976, Connor er a1 1976, Thylwe 1983) 
would also be desired because of its explicit simplicity, but has not been found. In 
the present discussion we shall give strong evidence for the existing residue formula 
(contrary to equations ( 1 )  or (27)) being correct ( p  is arbitrarily small) only in the 
large quantum number limit, and not in any other asymptotic limit independent of n. 
To this end we shall see how the assumptions and arguments of 9 2 fail to improve 
the validity of the residue formula, given e.g. by equation (4.18) in Thylwe (1983), 
beyond the usual requirement of well separated turning points r ( , )  and r (2)  (i.e. large n). 

Let us consider the following exact relation: 
+m - 1  r, =-( k + ; f 2  dr) 

(1” +4) 
where r, is the residue corresponding to the pole at 1 = I ,  and 
Regge-state wavefunction normalised so that, with obvious notation, 

is the pertaining 

+, r - t m  - exp(ikr-iq ln2kr-ilrr/2). (29) 

Equation (28) is a modified version of equation (10.4) in Newton (1964) and is valid 
for the most common case of first-order poles. 
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The relevant question here is whether or not one can successfully use in (28) the 
representation (22) for +, to evaluate the integral 5 +ir-’  dr. As pointed out by Froman 
and Froman (1977b) for the analogous bound state problem, this is a very dangerous 
procedure which is likely to lead to completely wrong results. The fundamental 
reason being that the integrand is exponentially large and oscillating on an integration 
path which is deformed to avoid both turning points r ( , )  and r (2) .  The accumulated 
absolute error is, therefore, generally larger than the value of the integral itself. Thus, 
a blind application of the assumptions in 0 2 would probably be fatal and, moreover, 
it does not lead to the wanted semiclassical expression which should be a good 
approximation, at least in the large n limit. 

To obtain the desired semiclassical residue formula, it seems unavoidable to use 
the approximate wavefunction in a region between the two turning points where, of 
course, the coefficient of the component fz( r )  must also be determined. But this is just 
the ‘traditional’ approach which may give a vanishing p integral only in the limit 
n + W. It should be possible, however, to improve the two-turning-point formula itself 
by using uniform techniques (allowing the proximity of and r(’))  and slightly modify 
the error analysis. 

The results of the present paper are obviously of decisive importance for analytical 
investigations of asymptotic properties of Regge poles using semiclassical and phase- 
integral formulae. For Lennard-Jones type potentials it has been explicitly shown that 
the Bohr-Sommerfeld formula ( I ) ,  and all higher-order phase-integral versions of it, 
correctly yield the terms in the high-energy and strong potential core expansion of all 
pole positions (Thylwe 1985). Such expansions cannot be derived for the pole residues 
from the semiclassical analysis unless uniform techniques are invoked. 

These conclusions confirm several already published numerical investigations by 
Connor and co-workers (Connor et a1 1976, 1979, 1980), who compared exact and 
semiclassical pole positions and residues for numerous interaction potentials. 
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